耳朵
听觉作用听觉和平衡觉的受器皆位於耳内,人耳可分外耳、中耳及内耳三部分;外耳包括耳壳和听管。人的耳壳不能转动,放在辨别声音的方向以及收集音波等方面,皆不若其他哺乳动物者有效(哺乳动物通常能转动耳壳以收集声音)。听管内有脂腺的分泌物,管壁内层有毛,两者皆可阻止异物入耳。
中耳与听管交界处有一薄膜,称为鼓膜,由外耳传来的音波,可以振动鼓膜。中耳为一小空腔,横越中耳腔有三块小骨,该三骨依序为槌骨、砧骨和镫骨,彼此前後衔接。由外耳传来的音波振动鼓膜後,便可经由该三小骨而向内耳传递。中耳腔内有空气,其下方有一耳咽管与咽腔相通,该管与咽腔相通处平时关闭,但在咀嚼或吞咽时便会打开,容空气进入中耳;以平衡鼓膜内外两侧的气压。耳咽管的关闭,可以阻断自己的声音由咽喉部直接经耳咽管进入耳,否则声音仓太大。假若病菌自耳咽管进入中耳,便会引起中耳炎。
内耳与中耳相接处亦有薄膜,中耳内的镫骨便与此薄膜相接。内耳为复杂而曲折的管道,故亦称此管道为迷路。该管道分耳蜗、前庭和三个半规管,管内充满淋巴。耳蜗和听觉有关,前庭和半规营则与平衡觉有关。耳蜗内有听觉受器,由中耳传来音波之振动,会振动耳蜗内的淋巴,於是刺激听觉受器而产生冲动,再出听神经传至大脑皮层而产生听觉。
耳朵的生理构造,主要可分为外耳、中耳、内耳三个部份,连接听神经至大脑,构成了人类的听觉系统(如上图)。耳部的构造由外耳耳廓进入外耳道后,接着的是中耳耳膜(鼓膜);中耳腔内有三块听小骨,分别是锤骨、砧骨及镫骨。镫骨接触到内耳之卵圆孔,声音由此传入内耳。
内耳的构造可分为二大部分。耳蜗部分司听觉,前庭半规管部分司平衡,耳蜗部分集合成耳蜗神经,半规管部分集合成前庭神经,此二神经再合在一起形成耳蜗前庭神经,就是第八对脑神经,由此再走入脑干的听觉神经核,接着上达大脑的听觉中枢。听觉中枢的主要区域在大脑的颞叶。故耳朵只是用来传导声音,最终仍须靠大脑听声音。每部份的听觉器官都各自具备了独特的功能,分述如下表:
生理构造
|
包含器官
|
各器官之基本功能
|
外耳
|
1.耳廓 | 收集声波,产生主体效果。 |
2.耳道 | 把声波传到耳膜,有扩大效果。 | |
中耳
|
3.耳膜 | 外耳、中耳之分界线,声波撞击耳膜时,会引起耳膜之振动,传入三块听小骨。 |
4.锤骨 | 合称「三小听骨」,以「杠杆原理」,把声波的能量转成「机械能」,从外耳经中耳送到内耳,有扩大效果。 | |
5.钻骨 | ||
6.镫骨 | ||
7.卵圆窗 | 是内耳门户,镫骨振动,影响其振动,引起内耳淋巴液波动,最后经由卵圆窗得到释放。 | |
8.耳咽管 | 连接中耳腔与咽喉部,排除积聚在中耳的液体,维持耳膜两边气压平衡。 | |
内耳
|
9.前庭 | 维持身体平衡。 |
10.半规管 | ||
11.耳蜗 | 有数以千计的绒毛细胞,将「液态能」转换成「电能」,连接听神经传至大脑。 | |
12.听神经 | 将电能传送至大脑,以产生听觉。 |
声音的传导途径:声音→耳壳→外耳道→耳膜→三小听骨→卵圆窗→耳蜗→听神经→大脑
|--------外耳(声能)-------|---中耳(机械能)---|-内耳(液态能)-|-中枢(电能)-|
所以,当外耳、中耳、内耳听神经及脑听觉中枢的任何部位有病变时,均会造成听力障碍。
人耳结构可分成三部分:外耳、中耳和内耳。在声音从自然环境中传送至人类大脑的过程中,人耳的三个部分具有不同的生理作用。
(一) 外耳
外耳是指能从人体外部看见的耳朵部分,即耳廓和外耳道。耳廓对称地位于头两侧,主要结构为软骨。耳廓具有两种主要功能,它即能排御外来物体以保护外耳道和鼓膜,还能起到从自然环境中收集声音并导入外耳道的作用。将手作杯状放在耳后,很容易理解耳廓的作用效果,因为手比耳廓大,能收集到更多的声音,所以这时你听所到的声音会感觉更响。当声音向鼓膜传送时,外耳道能使声音增强,此外,外耳道具有保护鼓膜的作用,耳道的弯曲形状使异物很难直入鼓膜,耳毛和耳道分泌的耵聍也能阻止进入耳道的小物体触及鼓膜。外耳道的平均长度2.5cm,可控制鼓膜及中耳的环境,保持耳道温暖湿润,能使外部环境不影响和失策以中耳和鼓膜。外耳道外部的2∕3是由软骨组成。
(二) 中耳
中耳由鼓膜、中耳腔和听骨链组成。听骨链包括锤骨、砧骨和镫骨,悬于中耳腔。中耳的基本功能是把声波传送到内耳。声音以声波方式经外耳道振动鼓膜,鼓膜斜位于外耳道的末端呈凹型,正常为珍珠白色,振动的空气粒子产生的压力变化使鼓膜振动,从而使声能通过中耳结构转换成机械能。由于鼓膜前后振动使听骨链作活塞状移动,鼓膜表面积比镫骨足板大好几倍,声能在此处放大并传输到中耳。由于表面积的差异,鼓膜接收到的声波就集中到较小的空间,声波在从鼓膜传到前庭窗的能量转换过程中,听小骨使得声音的强度增加了30分贝。为了使鼓膜有效地传输声音,必须使鼓幕布人外两侧的压力一致。当中耳腔内的压力与体外大气压的变化相同时,鼓膜才能正常的发挥作用。耳咽管连通了中耳腔与口腔,这种自然的生理结构起到平衡内外压力的作用。
(三) 内耳
内耳的结构不容易分离出来,它是位于颞骨岩部内的一系列管道腔,我们可以把内耳看成三个独立的结构:半规管、前庭和耳蜗。前庭是卵圆窗内微小的、不规则开关的空腔,是半规管、镫骨足板、耳蜗的汇合处。半规管可以感知各个方向的运动,起到调节身体平衡的作用。耳蜗是被颅骨所包围的象蜗牛一样的结构,内耳在此将中耳传来的机械能转换成神经电冲动传送到大脑。为了便于理解耳蜗的功能,我们用来显示镫骨足板与耳蜗的前庭窗的连接。耳蜗内充满着液体并被基底膜所隔开,位于基底膜上方的是螺旋器,这是收集神经电脉冲的结构,耳蜗横断面显示了螺旋器的构造。当镫骨足板在前庭窗处前后运动时,耳蜗内的液体也随着移动。耳蜗液体的来回运动导致基底膜发生位移,基底膜的运动使包埋在覆膜内的毛细胞纤毛弯曲,而毛细胞与听神经纤维末梢相连接,当毛细胞弯曲时神经纤维就向听觉中枢传送电脉冲,大脑接收到这种电脉冲时,我们就听到了“声音”。
平衡作用
我们的耳朵能帮助我们保持平衡。在每个耳朵里,有3个充满了液体的半规管。当头部运动时,液体流动,感受器向脑发送关于头部位置改变的信号。脑于是发出指令,确保身体平衡。人体维持平衡主要依靠内耳的前庭部、视觉、肌肉和关节等本体感觉三个系统的相互协调来完成的。其中内耳的前庭系统最重要,它的功能结构上其实就象眼睛一样,是一种特殊分化的感受器,主要感知头位及其变化。
在人类内耳的构造中,象蜗牛触角一样的三个半圆形管道,叫半规管。在半规管内亦有内淋巴,而半规管的两个脚里边也有毛细胞。所以内淋巴流动的时候亦会带动毛细胞弯曲倾倒,产生一种运动的感觉。半规管主要是感受正负角加速度的刺激,亦就是感受旋转运动的变化。由于三个半规管所在平面互相垂直,所以可以感受四面八方旋转运动的刺激。
三个半规管互相垂直,且位於三个不同的平面上,不论头部向任何方向转动,至少其中一个半规管会受淋巴振动的刺激而产生冲动,由听神经传到大脑,就会有头部转动的感觉,此即为平衡觉。人类习惯放在平面活动,假若身体上下移动时,例如在颠簸的海上航行,半规管受到不寻常的刺激,便有晕船的感觉。
前述的半规管是在头部转动时产生平衡觉,此为动的平衡觉;而前庭则在头部静止时产生头部位置的感觉,是为静的平衡觉,例如人若将头部朝下倒立,即刺激前庭,其冲动传到大脑,便会有头部位置和平时不同的感觉。
如果人做前后左右直来直去的运动是靠什么感觉到的呢?那是靠内耳的前庭部里的球囊和椭圆囊了。球囊和椭圆囊亦有内淋巴和毛细胞,另外还有耳石膜。当人做直线加速运动时,耳石膜里的位觉砂会向相反的方向运动,道理和瓶子里的石子一样,当向右晃动瓶子的时候,石子会滚动到瓶子左边,向左晃动瓶子的时候,石子会滚动到瓶子右边,从而刺激毛细胞产生平衡感觉。
头部处于正常位置时,耳石与毛细胞间呈一定的压力关系。头部位置改变时,两者在空间的相对位置也发生改变,耳石就不同程度地牵拉毛细胞的纤毛,从而刺激了毛细胞。毛细胞兴奋后,冲动经前庭神经传至前庭神经核,反射性地引起肌紧张的变化,维持了身体平衡。半规管的适宜刺激是旋转加速运动。在头旋转时,内淋巴因惰性而向与旋转相反的方向移位,终帽随之弯曲变形,这就间接地刺激了毛细胞及其基部的前庭神经末梢。电生理研究表明:当头部在静位状态下,终帽内的神经末梢发放一定的冲动。当终帽向一侧移位,即当水平管内淋巴流向壶腹和垂直管内淋巴流出壶腹而导致终帽弯曲时,冲动发放增加;当向相反方向移位时,发放就减少。旋转在等速持续进行时,发放开始时与加速度时相同,以后逐渐恢复到原先水平,而旋转突然停止时(减速运动),则终帽也受到移位,但方向与开始时相反。虽然内淋巴移位在3秒内即停止,而终帽却要25~30秒钟才回到静息状态,此时,人会有一种向相反方向旋转的感觉。
总之,耳朵的平衡感觉是范围广泛的反射运动,需要眼球、颈肌和四肢的肌反射共同参与完成。
更多参考:点我或我
没有评论:
发表评论